THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 5: Continuous Functions

1. Use the $\epsilon-\delta$ definition, show that $f(x)=x^{3}, x \in \mathbb{R}$ is a continuous function.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Use the $\epsilon-\delta$ definition to show that f is continuous at 0 .
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
x \sin \frac{1}{x} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Show that f is continuous at 0 .
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is discontinuous everywhere.
5. Prove that any polynomial is a continuous function on \mathbb{R}.
6. Let $K>0$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the condition $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in \mathbb{R}$. Show that f is continuous at every point $c \in \mathbb{R}$.
7. (a) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that $f(r)=0$ for all $r \in \mathbb{Q}$. Prove that $f(x)=0$ for all $x \in \mathbb{R}$.
(b) Suppose that $g, h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that $g(r)=h(r)$ for all $r \in \mathbb{Q}$. Prove that $g(x)=h(x)$ for all $x \in \mathbb{R}$.
8. (Thomas's function) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x \in \mathbb{Q} \text { in lowest terms and } q>0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is continuous at every irrational number but discontinuous at every rational number.
9. Let $A \subseteq \mathbb{R}$ and $f:(a, b) \rightarrow \mathbb{R}$ be a function that is continuous at $c \in(a, b)$. Suppose that $f(c)>0$, prove that there exists $\delta>0$ such that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$.
10. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a periodic function with period $T>0$, i.e. T is the less positive number such that $f(x+T)=f(x)$ for all $x \in \mathbb{R}$. Suppose that the function is continuous at every point $x \in[0, T]$, show that f is continuous everywhere.
11. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be additive if $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that if f is continuous at some point x_{0}, then it is continuous at every point of \mathbb{R}.
12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>0$ for all $x \in[a, b]$. Prove that there exists a number $\alpha>0$ such that $f(x) \geq \alpha$ for all $x \in[a, b]$.
13. Show that every polynomial of odd degree with real coefficients has at least one real root.
14. Let f be continuous function on the interval $[0,1]$ to \mathbb{R} and such that $f(0)=f(1)$. (Remark: Therefore, f can be regarded as a continuous function on a circle.) Prove that there exists $c \in$ $[0,1 / 2]$ such that $f(c)=f(c+1 / 2)$. (Hint: Consider $g(x)=f(x)-f(x-1 / 2)$.) Conclude that there are, at any time, antipodal points on the earth's equator that have the same temperature.
15. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions. Let $h:[a, b] \rightarrow \mathbb{R}$ be a function defined by

$$
h(x)=\max \{f(x), g(x)\} \quad \text { for } x \in[a, b] .
$$

Is $h(x)$ a continuous function? Why?
16. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that its image $f(\mathbb{R})$ is bounded.
(a) Prove that there is a solution of the equation $f(x)=x$.
(b) Furthermore, suppose f is strictly increasing on \mathbb{R} and $a \in \mathbb{R}$ such that $f(a)>a$. Let $\left\{a_{n}\right\}$ be a sequence defined by $a_{1}=a$ and $a_{n+1}=f\left(a_{n}\right)$ for $n \in \mathbb{N}$. Show that $\left\{a_{n}\right\}$ converges to a solution of the equation in (a).
(c) Hence, find an approximate solution of the equation $\frac{e^{x}}{1+e^{x}}=x$.
17. Let K be a compact nonempty subset of \mathbb{R} and suppose that the function $f: K \rightarrow \mathbb{R}$ is continuous. Prove that $f(K)$ is also a compact set in \mathbb{R}.
18. (Generalized Max-Min Theorem) Let K be a compact nonempty subset of \mathbb{R} and suppose that the function $f: K \rightarrow \mathbb{R}$ is continuous. Then f attains both an absolute maximum and an absolute minimum.
19. Prove that the function $f:[2,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{x-1}$ is uniformly continuous.
20. Prove that the function $f:[0,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x+1}-\sqrt{x}$ is uniformly continuous.
21. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R}.
22. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and monotone. Prove that $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous if and only if its image $f(a, b)$ is bounded.
23. If f is uniformly continuous on $A \subseteq \mathbb{R}$, and $|f(x)| \geq k \geq 0$ for all $x \in A$, show that $1 / f$ is uniformly continuous on A.
24. If $f: A \rightarrow \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if $\left\{x_{n}\right\}$ is a Cauchy sequence in A, the $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}. Furthermore, if f is continuous on A only, is the same conclusion true?

