THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Problem Set 5: Continuous Functions

- 1. Use the $\epsilon \delta$ definition, show that $f(x) = x^3, x \in \mathbb{R}$ is a continuous function.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0\\ \\ -x & \text{if } x < 0 \end{cases}$$

Use the $\epsilon - \delta$ definition to show that f is continuous at 0.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

Show that f is continuous at 0.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is discontinuous everywhere.

- 5. Prove that any polynomial is a continuous function on \mathbb{R} .
- 6. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition $|f(x) f(y)| \le K|x y|$ for all $x, y \in \mathbb{R}$. Show that f is continuous at every point $c \in \mathbb{R}$.
- 7. (a) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that f(r) = 0 for all $r \in \mathbb{Q}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
 - (b) Suppose that $g, h : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that g(r) = h(r) for all $r \in \mathbb{Q}$. Prove that g(x) = h(x) for all $x \in \mathbb{R}$.
- 8. (Thomas's function) Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x \in \mathbb{Q} \text{ in lowest terms and } q > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is continuous at every irrational number but discontinuous at every rational number.

- 9. Let $A \subseteq \mathbb{R}$ and $f: (a, b) \to \mathbb{R}$ be a function that is continuous at $c \in (a, b)$. Suppose that f(c) > 0, prove that there exists $\delta > 0$ such that f(x) > 0 for all $x \in (c \delta, c + \delta)$.
- 10. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a periodic function with period T > 0, i.e. T is the less positive number such that f(x + T) = f(x) for all $x \in \mathbb{R}$. Suppose that the function is continuous at every point $x \in [0, T]$, show that f is continuous everywhere.
- 11. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be additive if f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Prove that if f is continuous at some point x_0 , then it is continuous at every point of \mathbb{R} .
- 12. Let $f : [a,b] \to \mathbb{R}$ be a continuous function such that f(x) > 0 for all $x \in [a,b]$. Prove that there exists a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in [a,b]$.
- 13. Show that every polynomial of odd degree with real coefficients has at least one real root.
- 14. Let f be continuous function on the interval [0,1] to \mathbb{R} and such that f(0) = f(1). (Remark: Therefore, f can be regarded as a continuous function on a circle.) Prove that there exists $c \in [0, 1/2]$ such that f(c) = f(c + 1/2). (Hint: Consider g(x) = f(x) - f(x - 1/2).) Conclude that there are, at any time, antipodal points on the earth's equator that have the same temperature.
- 15. Let $f, g: [a, b] \to \mathbb{R}$ be continuous functions. Let $h: [a, b] \to \mathbb{R}$ be a function defined by

$$h(x) = \max\{f(x), g(x)\} \quad \text{for } x \in [a, b].$$

Is h(x) a continuous function? Why?

- 16. Let the function $f : \mathbb{R} \to \mathbb{R}$ be continuous and suppose that its image $f(\mathbb{R})$ is bounded.
 - (a) Prove that there is a solution of the equation f(x) = x.
 - (b) Furthermore, suppose f is strictly increasing on \mathbb{R} and $a \in \mathbb{R}$ such that f(a) > a. Let $\{a_n\}$ be a sequence defined by $a_1 = a$ and $a_{n+1} = f(a_n)$ for $n \in \mathbb{N}$. Show that $\{a_n\}$ converges to a solution of the equation in (a).
 - (c) Hence, find an approximate solution of the equation $\frac{e^x}{1+e^x} = x$.
- 17. Let K be a compact nonempty subset of \mathbb{R} and suppose that the function $f: K \to \mathbb{R}$ is continuous. Prove that f(K) is also a compact set in \mathbb{R} .
- 18. (Generalized Max-Min Theorem) Let K be a compact nonempty subset of \mathbb{R} and suppose that the function $f: K \to \mathbb{R}$ is continuous. Then f attains both an absolute maximum and an absolute minimum.
- 19. Prove that the function $f: [2, +\infty) \to \mathbb{R}$ defined by $f(x) = \frac{x}{x-1}$ is uniformly continuous.
- 20. Prove that the function $f: [0, +\infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x+1} \sqrt{x}$ is uniformly continuous.
- 21. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .
- 22. Suppose that $f:(a,b) \to \mathbb{R}$ is continuous and monotone. Prove that $f:(a,b) \to \mathbb{R}$ is uniformly continuous if and only if its image f(a,b) is bounded.

- 23. If f is uniformly continuous on $A \subseteq \mathbb{R}$, and $|f(x)| \ge k \ge 0$ for all $x \in A$, show that 1/f is uniformly continuous on A.
- 24. If $f : A \to \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if $\{x_n\}$ is a Cauchy sequence in A, the $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} . Furthermore, if f is continuous on A only, is the same conclusion true?